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PRELIMINARIES, NOTATIONS AND RESULTS

Let us consider a triangular matrix whose nth row consists of the n zeros,
gkll}Z~l=XO' of the Legendre polynomial PIl(x) with normalization
PIl{l) = 1 and another matrix whose (n - 1)st row has exactly (n - 1)
elements {xkn}Z::i= Yo which are the zeros of P;,(x). Writing X k for X kn ,

Ik(x) for Ikll (:'(), etc., and sometimes omitting superfluous notations, we
define a so-called quasi-Hermite-Fejer interpolation process QIl(f; X; x)
constructed on the set of nodes X = X ou { -1, I} (a polynomial of degree
:::;: 2n + I) by the following conditions:

QIl(f; X; ± 1) = f( ± 1); QIl(f; X; ~k) = ft(d, Q~{f; X; ~k) =0; k = G.
(1.1 )

Then, as is well known, QIl{f; X; x) is represented by

l+x 2 I-x?
QIl(f; X; x)= f(1) -2- PIl(x) + f( -1) -2- P~(x)

(1.2)

where Ik(x), k =G, is the fundamental Lagrange interpolation polynomial
built on the set of nodes X o.

The polynomial QIl(f; X; x) is known to be uniformly convergent (D.C.)
if f E C(l), I = [ -1, 1]. In regard to the rate of convergence, Prasad and
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Varma [4] and N. Mistra [3] supplied independent pointwise estimates
repectively given by

and

C 1 n (JT=7)IQnCf;X;x)-j(x)I~- L wI .
11 i=1 1

(1.3)

(1.4 )

C 1> C2,'" will denote absolute positive constants independent of nand x.
w.l) denotes the usual modules of continuity off Generally speaking (1.3)
and (1.4) are almost the same. In fact, (1.3) is a direct consequence of (1.4),
and (1.4) also reflects the fact that our polynomials are interpolatory.

As we hall see later in this section, still another type of pointwise
estimate, given by

• '. _ [ '~2 ~ (JT=7 1)IQll(f,x,x)-j(x)I-O ~l-x Pn(x) L. wI . +"".2
i~ 1 1 1

(Ji=? IPn(X)I)]+ WI 1/2 'n
(1.5)

holds true. It may be mentioned that both (1.3) and (1.4) are easy con
clusions of (1.S). Therefore we outline the proof of the equality (1.5) and
mention other V.C. processes that may produce identical estimates. For
this purpose, we start with the process Hn(f; Y; x) built on the set of nodes
Y = Yo u { -1, 1} uniquely defined by the conditions

H)j; Y; ±l)=j(±l); H;,(f; Y; ±1) = O.

k= 1, n-l,
(1.6)

The interpolatory operator Hn(f; Y; x) represented therefore by
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will be shown to satisfy an equality of the form (1.5), viz.,

(1.8 )

where nn+l(X)=(l-xZ)P~(x).

Let us now take up another so-called Hermite-Fejer type of quasi-step
parabola An.z(f; X; x) defined uniquely by the conditions!

A".2(f; X; ~k) = f((k); At'i(f; X; ~d = 0,

Anz(f; X; ± 1) = f( ± I).

k = G; \' = 1, 2, 3,
(1.9 )

The interpolation polynomial A n,2(f; X; x) is given by

A n,2(f: X; x)

I+x I-x n
=f(l)TP~(x)+ f( -l)TP~(x)+ I f(~k)

k=l

{ 1-2X~k+~k (X-~k)2(_~ ~ ( 1))(1-")}
x 1_ ~~ + (l _ ~kf 3 + 3 n n + X(,k

1- x 2
4

x1_l'zlk(X)' (1.10)
Sk

It is shown by A. Sharma and his associates [5J that the process
A n,2(f; X; x) converges uniformly to f(x) on I. We again emphasize that
the equality of the type (1.5), viz.,

( 1.11)

is satisfied by A n.2(f: X; x) also.

I The suffix 2 and then 4 is put in the notation for distinguishing these A's from their exten
sions.
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Exactly in the same way the A/l,4(f; Y; x) uniquely defined by

A/l.4(f; Y; Xk) = f(xd,

A /l,if; Y; ±1) = f( ±1),

and represented by

A(l'l(f' yo x ) = O'n,4 , ,k ,

A("l(f' yo +1)=0'n,4 , ,- ,

k = 1, n - 1, v= 1, 2, 3,

v=1,2, (1.12)

may be shown to satisfy

(1.13)

(1.14)

(1.15)

In order to illustrate the techniques of the proofs of (1.5), (1.8) (1.11), and
(1.15), we now consider mixed types of the two processes H/l and Ll/l which
are constructed by the following two sets of conditions on the matrix of
nodes the (2n + 1)th row of which consists of the elements of the set
z= YuXo:

H/l(f; z; ~k) = f(~k);

H/l(f; Z; Xk) = f(x k );

H/l(f; Z; ±1)= f( ±1);

H;,(f; Z; ~k) = 0;

H~(f; Z; x k ) = 0;

H~(f;Z; ±1)=0

k=G,

k=1,n-l, (1.16)
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..1,,(f; z; ~k) =f(~k); ..1,,(f; Z; xd = f(x k),

..1,,(f; Z; ± 1) = f( ± 1), (1.17)

..1),VI(f; Z; ~d = ..1;,V)(f; Z; x k ) = A~v)(f; Z; ± 1) = 0; v = 1, 2, 3.

These processes are explicitly represented by the equalities

n n-l

H,,(f; Z; x) = L f(~k) hL1)(x) + I f(x k) hL2)(x)
k~ 1 k~ 1

+ f(l) hoC,,) + f( -1) h,,(x),

where

(1.18)

(1.19)

(1.20)

h(2) _ R~(x) .
k (x) - 0 2 4 2'

w(n+1) P,,(xd(x-xd
k=l,n-l, (1.21 )

k=Ln-1,

n n-1

..1n(f; Z; x) = I f(~d A~I)(X) + I f(xd AL2)(X)
k~l k~l

+ f(l) AO(X) + f( -1) A,,(X),

AI1 ( -x) = AoC\") = 1+ 3n(n + 1)(1- x)

+ n(n: 1) (l19n2+ 119n+8)(1-x)2

5n(n+ 1)+ 8 (349n 4 +698n3+401n 2 +52n+12)(1-x)3

(l +X)4p~(X)p;,4(X)
x n4(n + 1)4 '

(2 . { 8n(n+ 1) _ 2 lOn(n+ 1)Xk 31
Ak)(x)= 1+ 3(1-

X
k) (x-x k ) + 3(l-xD2 (x-x k ) J
R~(x) .

(1.22)

(1.23 )

(1.24)
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x (l- ~~)4p~8(~k)(X_ ~d4'

Rn(x) = P,,(x) 1rn+ leX).

(1.25 )

The expressions (1.22) and (1.18) are readily obtained by making use of the
following relations:

R~(~d _ 2~k . R::C"l:k) -0'
R~(~k) - 1- ~r R~(xd - ,

R:'(~k) 8a (4n2+4n-2) R:'(Xk) -4n(n+l).
R~(~k)=(1-~n2 I-~~; R~(Xk)= I_~~' (1.26)

R~iV)(~k) 48~~ ~k(28n2 + 28 - 24). R(iv)(Xk) - 20xk(n + 1)n.

R~(~d (l_~~)3 (1-~n2 'R~(Xk) = (1-x~f '

R "(I) 3 R:(-I).
R~( I) =2n(n + 1) = R~,( - 1) ,

R~'(1)=n(n+1)(2 2 2n-l) R~'(-1). (1.27)
R~(I) 2 n + R~(-I)'

R(iV)(I) S(n -1) n(n + 1)(n + 2) , R~iv)( -I)
;;,(1) 48 (7n- + 7n - 6) = - R~( -1) .

The relation (1.26) and (1.27) can be verified by the differential equations
satisfied, respectively, by P,,(x) and TC"+I(X),

(1- x 2
) P:(x) - 2xP~(x) + n(n + I) P,,(x) = 0,

(1- x 2
) 1r~+ leX) +n(n + 1) 1r,,+ leX) =0,

and by the following relations:

P:,( I) = !n(n + I) = (-1)" - l P,,( -I);

P;( 1) =!(n + 2)(n + 1) n(n - I) = ( -1)"P:( -1);

(1.28 )



(1.29)

QUASI-HERMITE-FEJER INTER POLAnON

P;;'( 1) = 4's(n + 3)(n + 2)(n + l)(n)(n - l)(n - 2)

=(_1)n- 1p;;'(-1);
. 1

P~iV)( 1) = 384 (n + 4 )(n + 3)(n + 2)(n + 1) n(n - J )(/1 -:1 )(n - 3)

= (- 1)"P~iv I( - 1);

n;, + 1(I) = -n(n + 1) = (-1)" - 17[;1+ If - 1);

n;;+I(1) = - ~112(11 + 1)" = (-l)"n;;+j( -1);

7[;;'+1(1)= -!(n+2)(n-1)n2(n+ 1f= (_1)"-lJI~'(_1);

n;i~)l( 1) = - fsn 2(n + 1)2(n + 3)(n + 2)(n -1 )(n - 2)

= (- 1)"n ~i:r 1( - 1).

7

Finally, the process An(f; x) defined for any set of nodes {xdz= I that are
the zeros of orthogonal polynomial Wn(x) is represented by

where

n

A,,(f; x) = L J(xk) Uk(X) Li(x),
k=l

(1.30)

L (
. ) = JoVn(x)

k x, ,
W,,(Xk){X-Xk)

k= r,n. (1.32)

We now state the main result of this section as follows:

THEOREM 1. Let Hn(f; Z; x) and A,,(f; Z; x) be represented by (1.18)
and (1.22) and f E C(I); then for each x E I and every natural number n, we
have
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(b) IA,,(f;Z;xl-f(x)1

_ [R~(X) ~ (JI-X2 1) (IR"(x)/)J-O--L.wf . +72+ wf .
n ;~I I I n

In order the establish the theorem we need a series of results given in the
forms of the following lemmas:

LEMMA 1. For each x E I and n ~ 3, we have

h(l)( ).,,;::Cll
k X "'·2'

II

h (2)( ')";:: C 12
k X '" .? ,

12

, (I J( ):< C 13
II. k X '" "2 '

II

,1.(2)( ):<C I4
k x '" "2 '12

where JI and J2 are defined by

(1.33)

(1.34)

( 1.35)

(1.36)

IX-~hl= min IX-~kl
l~k~n

and

Ix-x";,1 = min jx-xkl·
- 1 '!f::k~n-l

(1.37)

(1.38)

LEMMA 2. We have,for each x E I and JI' J2 defined by (1.37) and (1.38),

I _J'./,\I)( ):<C IR,,(x)1
x 'oJI /1,11 X '" 17 n

(1.39)

(1.40)

(1.4l)
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and

1__ 1'(2)()::::::C IRI1(xJI
.X xi, Ai1 X -...;: 18 n .

LEMMA 3 [0. Kis and P. Vertesi]. Let x = cos e, ~k = cos Bb

cos 'Pic' Then

-o[ (V/ 1
-

X2
1 ')J.- w)" +0,

n n",

Similar estimates holdfor wf[jx - xkl).

LEMMA 4. The following estimates are valid:

(i) (1- X 2 )14IPn(xJI ~ J"2 n-1;2,
n

9

(1.42 )

\

(iii) (1-x2)12IP~(x)1 ~n,

(iv) IPn(x)1 ~ 1,

(v) IRI1 (x)1 ~ 2,

( 1)2 ( 1)-2(vi) l-;k> k- 2 n+ 2 ;

( 1)2 ( 1)-2> \n-k+ 2 n+ 2 ;

... (k - !)n kn
(VlIl) 1 < ek < --1 ;

n+ 2 n+ 2

fT
(ix) \Pn(xdl ~J8kn'

for x E I, n ~ 3,

k= [~l + 1, n,

k=rn,

k = 1, n-1,
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!...----:-::2 2 1
(x) nvl-xkPn(xd~8n'

(xi) (l-~n3i2P:,2(~k)~Cln; k=G,

(i)

LEMMA 5. The following identities hold:

n 1
L -1

k= 1 (1- ~i) P~2(~d - ,

n 1 n 1 11 1
(ii) L -1-y = L -1-Y = L -1Y2 = P;,(I),

k=l -Sk k=l +Sk k~l -Sk

(iii) f (1-\ )2 P;,z(I)-P~(I),
k= 1 'ok

n 1- x2

(iv) L -1·Y2 ~k(X) = 1- P~(X),
k=l - Sk

n 1
() "\' -P'(I)

V k~l (1- ~k)3(1 + ~k) P~2(~d - n ,

n-l 1 1 4
(vi) L 2 4 --= O(n ).

k~l (l-xk ) Pn(Xd l-xk

LEMMA 6. The following relation for the modulus oj continuity of J is
valid for x E I:

Proof of the various parts of the Lemma 5 can either be found in [4, 5]
or can easily be established by making use of the definitions and results
already known. For example, parts (ii) and (iii) are easy consequences of

(1.43 )

(1.44 )
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Lemma 6 has already been shown in the book of R. A. DeVore [1]. Most
of the results stated in Lemma 4 can be found in any standard text on
orthogonal polynomials (e.g., Szego [6]). The rest were given by P. Turan,
P. Erdos, and others. Lemma 3 is self-evident.

In order to prove Lemma 2 (say, (1.39)), we set

[(II' )_ R)x)
k (x -(1 ~2)p'2(~)' v,

- 'ok ,,'ok Ix - ~d
(1.45 )

(1.46 )

We obtain the following identities from the representations (1.22) and
(1.18), putting f(l)=-I:

fZ n-l

l=-ho(.1")+h,,(x)+ L hPI(x)+ L h12 )(x),
k~ 1 k~ 1

fl n-l

l=-Ao(x)+},,,(X)+ L },pl(X)+ L },~2)(X).
k~I k~1

It is clear from (1.19-(1.21) that

(1.47)

(l.48 )

hfi(X) >0.

which imply that

"L hpJ(x) ~ 1.
k=I

From the above relation we have

or

which, in turn, implies

~

vi I-x- 1[1 1 ) )1 C
1-;::2 k (x ,,:;; 3'

'ok

k= 1, n. (l.49 )
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Now, owing to the representations

11

proving thereby (1.39).
Quite similarly it can be shown that

k = 1, n-1.

Therefore from the inequality obtained from (1.47), i.e.,

n-l

L W)2(X)~ C7 ,

k~l

and the relations

the assertion (1.40) follows at once.
We observe from the identity (1.48) that

due to which

n

L A~l)(X) ~ 1.
k=l
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Owing to this inequality. we immediately have

n (1_X2)2

k~l (1- a)2 W)4(X):( C9 ,

which gives

13

(1.50)

The same arguments lead to (1.44) also. This completes the proof of
Lemma 2.

We now show the various parts of Lemma 1. Owing to

2R~(x)
:(-_-.:..:.._--

22·,O-(h
C n sm k

--

I 2
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(1.51 )

which is evident by making use of suitable forms of Lemma 4, we
immediately obtain (1.33). The inequality (1.34) can be proved similarly.
Owing to (1.46) we get (1.36) if we take into account (1.24) and

(1.52)

To show (1.35), we make use of (1.51) and (1.25) and the representation
(1.48). Thus we have completely proved Lemma 1.

To prove our main result, we take into account the identity (1.47) and
write the difference

Hn(f;Z;x)- f(x) = [f(1)- f(x)] ho(x)+ [f(-I)- f(x)] h,,(x)

"+ L [f(~d - f(x)] h~/)(x)
k~1

,,-1

+ L [f(xd-f(x)] hj/)(x)
k=1

4

= L Tp ' say.
p=1

To conclude the proof of the theorem, we show that

(1.53 )

which, owing to simple properties of the modulus of continuity, at once
gIVes

ITtl + IT2 1 :::;24WrCR~X)I) + 18WfCR,~X)I)

= 42Wf('R,,~X)I).
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For T3 and T4 , the patterns are similar. Therefore we work out only one of
them. For instance, T3 is first broken into two parts, viz.,

where

fI

T31 = L: [f(xd - !(xl] h1"(x)
k~1

k#},

and

T32 = [f(xi/) - f(x)] h},II(X).

We shall now show that

(1.54)

(1.55)

(1.56)

which is a direct conclusion of suitable forms of Lemma 2 and the
inequality

fI

L: h~I)(X) < 1.
1=1

Using the appropriate forms of Lemma 1, we have the desired form for T31 ,

i.e.,

(1.57 )

Now applying Lemma 6, we get the required form. Because of (1.53 H 1.57)
we have our theorem once the estimates for T4 are also computed.

Similar arguments apply to part (b).
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